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This article considers a Reed-Solomon (RS) code to be a special case of a re-

dundant residue polynomial (RRP) code, and presents a fast transform decoding

algorithm to correct both errors and erasures, This decoding scheme is an im-
provement of the decoding algorithm for the RRP code suggested by Shiozaki and

Nishida [1], and can be realized readily on VLSI chips.

I. Introduction

Classes of redundant residue polynomial (RRP) codes

were introduced first in [3,4]. These codes are constructed

by use of the Chinese remainder theorem for polynomials

over a finite field GF(q). The codeword symbols of the
I_RP codes are expressed as polynomials over this field.

The RRP codes can correct t error symbols with the aid

of 2t redundant symbols.

Reed-Solomon (RS) codes constitute a subclass of
RRP codes and are used in many sectors of today's indus-

try. Some examples are the (255,223) 16-error-correcting

RS code (NASA code) used in deep-space communications,

the (31,15) 8-error-correcting RS code (JTIDS code) used

in military communications, and the Cross Interleaving RS

code (CIRC code) used in the compact-disc industry.

As Shiozaki [5] points out, by using the Chinese re-
mainder theorem together with the Euclidean algorithm,
an RRP code can be decoded without solving the error-

locator polynomial and the error-evaluator polynomial.

The decoder developed in [5] is a general frequency-domain
implementation type depicted in the second block diagram

in Fig. 9.2 of [2]. The advantage of the decoder in [5] over

the decoder in [2] is that both the reenrsive extension and
the inverse transform can be replaced by a single polyno-

mial division. IIowever, the method proposed by Shiozaki

has the disadvantage that the reconstruction of the cor-

rupted information polynomial F_(x) from the received
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symbols involves n polynomial multiplications in GF(q),

followed by the operation modulo M(x), where n is the

codeword length and M(x) is a product of n polynomials.

These operations severely lower the decoding speed.

This article considers RS codes to be a special case

of the RRP codes and proposes to decode RS codes by

the use of both the Fermat number transform [6,7] and

the Euclidean algorithm. The Fermat number transform

(FNT) eliminates polynomial multiplications and reduces
the number of multiplications needed to reconstruct F_(x)

to n log 2 n. The fast transform decoding scheme proposed

in this article is faster than the decoding algorithm in [5].

II. Some Preliminaries on Finite Fields and
the Fast Fermat Number Transform

Given that GF(q) is a finite field, let GF(q)[x] be the
ring of polynomials over GF(q).

Definition 1. The two polynomials ml(x) and m2(x)

over GF(q) are said to be relatively prime if and only if

the greatest common multiple of ml(x) and m2(z) is a

constant in GF(q).

Definition 2. The two polynomials ml(x) and m2(x)

over GF(q) are said to be congruent modulo re(x), i.e.,

ml(x) - m2(x) mod re(z) if and only if re(x) divides

ml(*) - m2(x).

The Chinese remainder theorem is presented here for

convenience; proof can be found in [11]. Let M(x) =

1-'I_=1 mi(x) be a product of pairwise relatively prime poly-
nomials. Let A1 (x), A2(x),..., Ar (x) be any r polynomials

such that deg[Ai(x)] < deg[mi(x)], i = 1,2,..., r. Finally,

let ti(x) satisfy

M(x)ti(x)-- l mod mi(x) for(i=l,2,...,r)
mix

There then exists one and only one polynomial f(x)

of GF(q)[x] of degree satisfying deg[f(x)] < deg[M(x)],

which uniquely solves the system of congruences:

f(x) =_ Ai(z) mod mi(x)

The polynomial f(x) is given by

f(x) =- _ _ti(z)Ai(x) mod M(x)
i=1

(1)

Let GF(q) be a finite field, let n be a number that
divides q - 1, and let 3' be a primitive nth root of unity.
Define n- 1(gi)i=0 to be a sequence of n elements from GF(q).
A discrete Fourier transform of this sequence of length n

is defined by

n-1

Ak=--__,ai@ imodq for (k=0,1,...,n-1) (2a)
i--o

The inverse discrete Fourier transform of Ak is defined

by

ai=_n-1 [_AkT-ikl mod q for(i=O,1,...,n-1)
Lk=0

(2b)

A direct computation of the transform in Eq. (2a) or

its inverse transform in Eq. (2b) requires n(n- 1) multi-

plications.

When q is a Fermat prime, the Fermat number trans-

form (FIT) over GF(q) can be used. A Fermat prime F,_
is defined by

for (m = 1,2,3,4)

for (m= 1,2,3,4)

It is shown in [6,7] that integer 3 is a primitive

l = 22'_th root of unity in GF(Fm). Next, let n divide

22" . Finally, suppose 3' is a primitive nth root of unity in

GF(Fm) where

The purpose of an FNT of length n is to compute et'-

ficiently the transform sequence ( k)k=o using Eq. (2a).

On the other hand, the inverse Fermat number transform
n-1

(IFNT) of length n reconstructs the sequence (ai)i=0 from
t A _n-1 via Eq. (2b) Since the order of 3' isthe sequence t k)k=0

a power of 2 in GF(F,_), the length of the sequence to be

transformed is a power of 2. As a consequence, the very
efficient FNT can then be used to yield a fast transform [6]

which is analogous to the fast Fourier transform (FFT). In

this case, the number of multiplications involved in evalu-

ating such a transform sequence of length n is n log 2 n [8].

A new type of Fermat number multiplier is developed in

[9]. More details about the FNT can be found in [6].
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!11.Nonsystematic RS Codes

First, a set of RRP codes is defined. As shown next,

these codes are constructed using the Chinese remainder

theorem for polynomials over a finite field GF(q). Let

too(X), ml (x),..., and m,_x(x) be n relatively prime poly-
nomials, and

n-1

M(x) = H mi(x)
i=0

Assume that the degree of each mi(x) is d, and that

kd information symbols u = (u0, ul,..., Ukd-X) are repre-

sented by the information polynomial as

F(x) -- uo "-Fulx "+"" -t- Ukd-tX kd-1

where uieGF(q) and k < n. Then an RRP code is the
residue representation of F(x), that is,

E = (A0(x), Ax(x),..., A,_-l(x))

where Ai(x) = F(x) mod mi(x) and deg[Ai(x)] < d. By
the Chinese remainder theorem, F(x) can be recaptured

from Ai(x). The vector corresponding to the polynomial

Ai(x) is named the ith symbol. A code vector u can correct
error symbols less than or equal to t symbols if n - k > 2t

[3,4].

The following shows that RS codes are a subclass of
RRP codes. In order to facilitate the fast encoding and de-

coding procedures, which make use of the fast FNT meth-
ods as described in Section II, the codeword length n is

required to be a power of 2.

Let too(X), ml(x),..., m,-l(X) be n relatively prime

polynomials given by

mi(x)=x--7 i for (i=O,l,...,n-1)

Also let the k information symbols

(U0, Ul,..., U/v--l), uicGF(q)

be denoted by the information polynomial

r(x) = u 0 "4- Ul.T + ''" ']- Uk-1 z/v-1

Then the equations

F(1) __ F(x) mod too(X)

F(7) -- F(x) mod ml(x),...,

and

F(7 "-1) = F(x) mod ra,_1(x)

lead to a code vector u_.represented by

Z = (Ao,A1,... ,An-l) = (F(1), F(7),..., F(3,"-1))

The code vector u.e_is a nonsystematic RS codeword.

It is not difficult to see that u. = (Ao,A1,...,An-1) is

just the FNT of the sequence (u0,ul,...,uk-l,0,...,0)

and the k information symbols (uo,ul,...,u/v-1), i.e.,

F(x) can be recaptured by an IFNT on the code vector
u= (Ao, Ax,... ,An-l).

On the other hand, since an RS code is a special case

of an RRP code, the information polynomial F(x) can be

recaptured also from u_.= (A0, A1,..., A,-1) by the use of

the Chinese remainder theorem. Let ti(x) denote a poly-
nomial that satisfies

M(x)
-----r-Tti(z) - 1 rood m,(z) for (i = 0, 1,... ,n - 1) (3)
mi(x)

where

n-1 n-1

= II = II - ¢)
i=0 /=0

Then the information polynomial F(x) can be recon-
structed as

F(x)- [_ M(x)ti(x)A,
Li=0 mi(=)

(mod M(x))

IV. Decoding RS Codes

As Shiozaki et al. [1,5] point out, by using the Chi-

nese remainder theorem together with the Euclidean algo-

rithm, the RRP codes, which include the RS codes, can be

decoded without solving the error-locator polynomial and

the error-evaluator polynomial. However, that method has

the disadvantage that the reconstruction of the corrupted

information polynomial F_(x) from the received symbols

involves n polynomial multiplications in GF(q) followed

by the operation modulo M(x). These operations can sig-

nificantly lower the decoding speed. A modified decoding

scheme, which makes use of the fast transform technique
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to bypass the tedious polynomial multiplications and mod-

ulo M(z) operation, is given in the Appendix.

A. Decoding for Correcting Errors

The overall decoding of nonsystematic RS codes for

correcting errors using the EucIidean algorithm is summa-

rized in the following (see the Appendix for details):

1. Compute the IFNT of the received code word u_ =
l I I(A0,A1,...,An_I) from Eq. (A-I) in the Appendix to

obtain

• _t Xn- 1F'(z) = + .. +

in Eq. (A-3). Next, calculate the degree of F'(x). If

deg[F'(x)] < k, where k is the number of information

symbols, then the information polynomial F(x) = F'(x);
otherwise, go to step 2.

2. To determine the error-locator polynomial D(z) in

Eq. (A-5) and F'(z)D(z), apply the Euclidean algorithm

to M(z) defined in Eq. (3) and F'(z). The initial val-

ues of the Euclidean algorithm are pa(z) = O,po(z) =

1,r_l(z) = M(z), and r0(x) = F'(x). The iterative
procedure of the Euclidean algorithm terminates when

deg[ri(z)] < n - [(d- 1)/2J where LzJ denotes the great-

est integer less than or equal to z.

3. Compute F(z) from Eq. (A-14).

A flowchart of a decoding algorithm to correct errors

only is depicted in Fig. 1. An example of this decoding

scheme is given in Example 1.

B. Decoding to Correct Errors and Erasures

Shiozaki [5] suggests a decoding scheme to correct

both errors and erasures. This algorithm ignores the era-
sure locations and uses the Chinese remainder theorem and

the Euclidean algorithm to decode the shortened RS code-

word. However, the shortened codeword loses the FFT

structure; thus, a fast transform decoding scheme cannot

be used. In this section, an improved decoding scheme
is suggested which uses the fast-transform techniques dis-

cussed in the previous sections to decode RS codewords
with both errors and erasures.

Suppose an RS codeword is transmitted through a

noisy channel. Let there be s erasure symbols and t error
symbols in the codeword such that 2t + s < n - k. Next,

assume that the symbols at positions kl, k2, ..., ks are era-

sure symbols and that the symbols at positions gl, g2, • .., gt

are error symbols. Finally, define

$

DI(x) = H(x - 7 k') (known) (4)
/=1

and

t

D2(z) =H(z-7 l') (unknown)
i=l

and

D(x) =DI(z)D2(x)

By an extension of the derivation of the key Eq. (A-9)
given in the Appendix, the following key equation for both
errors and erasures can be obtained:

-M(x)B(x) + F'(x)Dl(x)D2(x) = F(x)D (x)Da(x)
(5)

where B(z) is as defined in Eq. (A-5) in the Appendix,
deg[D2(x)] < [(d-1-s)/2J, and deg[F(x)Dl(x)D2(x)] <

n-[(d-l-s)/2j-1.

The Euclidean algorithm is an iterative procedure

which can be used to find in Eq. (5) the greatest common

divisor (GCD) of M(x) and F'(x)Dl(x) [10]. An impor-

tant intermediate relationship among the polynomials of

the Euclidean algorithm is given in the equation

F'(z)Dl(z)pi(x) + M(x)si(x) = r,(z) (6a)

and

deg[pi(z)]+ deg[ri(x)] < deg[M(z)] for - 1 < i < m
(6b)

where i is the iterative index and r,.(x) is the GCD of

F'(z)D_(x) and M(z). The algorithm involves four se-

quences of polynomials: si(z), pi(z), ri(x), and qi(z). The

initial conditions are set in accordance with the following
rules:

1. For deg[F'(z)Dx(z)] _ deg[M(z)], set s-l(z)= 1,

So(Z) = O, p-x(z) = O, po(z) = 1, r_x(z) = M(z), and

r0(_) = F'(x)DI(x).

133



2. For deg[F'(x)Dl(x)] > deg[M(x)], set s-l(x) = O,

so(x) = 1, pl(x) = 1, po(x) = 0, r_l(z) = r'(X)Dl(X),

and r0(x) = M(x).

Since 2t + s _< n- k,

deg[D2(x)]+ deg[F(x)Dl(x)D2(x)] = 2t + s + k - 1 < n
= deg[M(z)]

(Z)

Therefore, let 2t -I- s _< n - k, u = L(d- 1 - s)/2], and

v = n - [(d- 1 - s)/2J - 1. By the proof of the theorem in
the Appendix and Eqs. (5), (6a), (65), and (7), there ex-

ists a unique index j in the Euclidean algorithm such that

D2(x) = )_(x)pj(x) and F(x)Dl(x)D2(x) = A(x)rj(x),

where A(x) is some polynomial, deg[pj(x)] < I(d-l-s)/2J,

and deg[rj (x)] < n - [(d- 1 - s)/2]. Thus, F(x) can be
reconstructed as follows:

r/(x)
F(x)- Pi(x)DI(x) (8)

The overall decoding of nonsystematic RS codes for

correcting errors and erasures using the Euclidean algo-

rithm is summarized in the following steps:

1. Use step 1. from the description of decoding for

correcting errors.

2. Compute the erasure-locator polynomial DI(z)
from Eq. (4). Next, compare deg[F'(x)Dl(x)] with

deg[M(x)]. If deg[F'(x)Dl(x)] <_ deg[M(x)], set p-l(X) --
O, po(x) = 1, r_l(x) = M(x), and r0(x) = F'(x)Dl(x);

otherwise, set p-l(X) = 1, po(x) = 0, r-l(x) =
F'(x)Dl(x), and to(x) = M(x).

3. To determine the error-locator polynomial D2(x)

and F'(x)D(x), apply the Euclidean algorithm to M(x)

and F'(x)Dl(x). The initial values of the Euclidean algo-
rithm are defined in step 2; the iterative procedure of the

algorithm terminates when deg[ri(x)] < n- [(d- 1 - s)/2J.

4. Compute F(x) from Eq. (8).

A flowchart of the decoding scheme for correcting both
errors and erasures is given in Fig. 2. A depiction of this

decoding scheme is presented in Example 2.

This simpler, faster transform-decoding scheme using

the FNT for RS codes is particularly suitable for pipeline
VLSI implementation. The transform-decoding scheme

utilizes an efficient FNT to compute the corrupted infor-

mation polynomial F'(x) in a manner analogous to syn-
drome computation in the conventional decoding schemes.

However, this new algorithm does not require the extra
steps needed to solve the error-locator and error-evaluator

polynomials.

C. Examples of the Two Decoding Methods

Example 1. Consider the Fermat prime/13 = 17, and

let k = 4. This is an (8,4) RS code over GF(17), which is

capable of correcting two errors or less. It is shown in [6]

that 3' = 2 is a primitive 8th root of unity. Also, for this

case,

i=7

M(z) = H(x- 7 /) = x s- 1
i=0

Let the four information symbols be u = (2, 3, 1, 4).

Then F(x) = 2 + 3x + x 2 + 4x 3. An FNT on the sequence

(2, 3, 1, 4, 0, 0, 0, 0) yields the codewor'd E = (10, 10, 14, 13,

13,2,5,0). Next, let the third and seventh symbols be er-
roneous. Thus, e_= (0, 0, 5, 0, 0, 0, 15, 0) and _' = (10, 10, 2,

13, 13,2,3,0), where _, e_, and E' are as defined in the

Appendix. After taking the IFNT on E _, one obtains

F'(x) = 13 +8x + 7x 2 + 16x a+ llx 4 + 5x 5 + 6x s + 12x 7.

The Euclidean algorithm stops after the second iteration

to yield r2(x) = 10x 5 + 11x 4 + 9x 3 + 16x 2 + 16x + 5 and

p2(x) = llx 2 + 11. Then F(x) is recaptured as

F(x) = r2(z.____))= 2 + 3x + x 2 + 4x 3

That is, u = (2, 3, 1, 4).

Example 2. Consider the same codeword E =

(10, 10, 14, 13, 13, 2, 5, 0 / given in Example 1. Let the first
symbol be an error symbol, and the third and seventh sym-

bols be erasure symbols. Thus, e_ = (1,0,5,0,0,0, 15,0),

and E' = (11, 10,2, 13, 13,2, 3, 0). After the IFNT is taken
ofu', one obtains F'( x ) = l l + 6x + 5x2 +14xa + 9x4 + 3xs +
4x 6 + 10x 7. Since the erasure symbols are at the third and

seventh positions, D1 (x) = (x - 22) (x - 26) = x 2 + 1. Thus,

F'(x)D_(x) = lOxg+4xs+13xr +13x6+14x4+3xa+16x2+

6x + 11. The Euclidean algorithm stops after the second

iteration to yield ra(x) = x 6 + 12x 5+ 10x 4 + 16x 3 + 4x + 8

and p2(x) = 13x + 4. Then F(x) is recaptured as

r2(x) - 2 + 3x + x 2 + 4x a
F(x)- p=(x)D_(x)

That is, u = (2, 3, 1, 4).
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V. Conclusions

In this article, a fast transform decoding scheme is in-

troduced which is particularly suitable for VLSI implemen-
tation. This scheme first utilizes the highly efficient Fermat
number transform to calculate the corrupted information

polynomial F'(x). It then uses the Euclidean algorithm to
evaluate the information polynomial F(x) directly, with-

out going through the intermediate steps of solving the
error-loeator and error-evaluator polynomials. Thus, this

fast-transform decoding scheme is faster and simpler than

the decoding scheme in [1].
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ORIGINAL PAGE IS
OF POOR QUALITY

I FIx) = IFNTON THE I

I
SEQUENCE (A_)_

l

p_l(xl =O,Polxl = 1 I
r_l(X) = M_x), rO(x) = F_x) I

I i=1

deg[r i (xl] < deg[ri, l(X)]

f

]

F(X) = ri (x) I

pi(x) l
Fig. 1. Flowchart of decoding procedure to correct

errors only.

p.l(X) = O, Po(X) = 1

r_l(X) = M(x), r0(x) = FXX)Ol(X)

l "n'l 1Ftx)= IFNT ON THE SEQUENCE (A_) k = 0

Fix) = F_d I

[ Dl (x} = S - __Eli= 1 (x

YES _ NO

CllX) = FlxlDl(X), rO (x) = M{x)_

I I

I f=1

ri - 2 (x) = qi (x)ri - 1(x} + r/(x) 1deg[r/(x)] < deg[§._ l(X)]

]

Pi (x) = Pi- 2 (x} " qi (x) Pi- l(X) I
J

"1

F(x) = r i (x) I

Pi(x)Di(x) J
Fig. 2. Flowchart of decoding procedure to correct errors end

erasures.
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Appendix

Decoding RS Codes Using the Euclidean Algorithm

Suppose the codeword __ = (Ao, AI,...,A,-1) is

transmitted through a noisy channel. Assume that the

symbols at positions £1,£2,..., and £t are in error. The

received codeword v' is thus represented by

' ' A' (A-l)EI=__+e_=(Ao,A1, ..., n-1

where e_is the error vector defined by

= (o, ..., e,,, o, ..., ,,,,..., o)v (A-2)

Let (U_o,U'l,...,u'_l) and (Wo, Wl,...,w,-1) be the
inverse transforms of E' and e respectively. Also let

u' z'*-z be defined as the cor-F'(x) = u_+ ui_ +"" + ,-1
rupted information polynomial, and E(x) = wo + wlx +

• .. + Wn_lX '_-1 be defined as the error polynomial.

It is not difficult to see that the residue representations

of F'(x) and E(x), modulo mi(x) are Eqs. (A-l) and (A-2)

respectively. That is, v__'and e__can be written, respectively,
as

z' = (r'(1), e'(7),..., F'(<-'))

and

e_= (E(1), E(7),..., E(7n-'))

Prom Section III, an RS codeword v is generated by

an information polynomial F(x) via the following:

z = (rfl), r(r),..., F(<-I))

Since v' = v + e_, one obtains F'(7/) = F(7 i) + E(7 i)

for 0 < i < n - 1. Thus, there are at least n values of x for

which F'(x) and F(x) + E(z) are equal. It is obvious that

deg[F(x)] < k, deg[F'(z)] < n, and deg[E(x)] < n. Hence,

by the fundamental theorem of algebra,

r'(x) = F(x) + E(x) (A-3)

Since RS codes are a special case of RRP codes, it is

shown in [5] that F'(x) and E(z) can also be reconstructed

using the Chinese remainder theorem as follows:

Li=0

and

E(x)=[,=_-_t(_)-_)t,,(x)e, , mod M(z)
(A-4)

Let

B(x)= [_-'_ D(z) tt,l modD(z),=1m,,(_) J
(A-5)

where

D(x) = H mt,(x)
i=1

is called the error-locator polynomial. The key equation of

the decoding algorithm is derived from these relationships.

First, let

M(z) (A-6)
A(z)- D(z)

and

.-L D(z)
B'(=)= ___ t_,(=)e_,

i=1m_,(_,)

Then, by Eq. (A-4), one has

[M(x)@_tt,(x)et, ] mod M(x,

[A(x)B'(x)] mod A(x)D(x) (A-7)

Equation (A-7) can now be re-expressed as:

E(x) = A(x) [A(x)D(x) + B'(x)]

= A(z)[B'(x) mod D(x)] (A-S)
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where )_(x) is some polynomial over the finite field. Using

Eq. (A-5), a substitution of A(z) and B'(x) in Eq. (A-6)

into Eq. (A-8) yields

E(x) = M!Z)B(x) (A-9)
u(x)

The proof of Eq. (A-9) is similar to the proof given

in [5]. A similar result of Eq. (A-9) is given by Blahut in
theorem 9.1.1 of [2] using a spectral technique. The de-

coder in Fig. 9.2 of [2] applies the Euclidean algorithm to

M(x) and the 2t high-order coefficients of E(x) to deter-
mine the error-locator polynomial D(x). Then a recursive

extension is used to compute the rest of the coefficients of

E(x) from the known D(x). Finally, the inverse transform

over GF(2 n) of Ej is taken to recover the error pattern.

The next paragraph describes how the decoder de-

veloped in this article applies the Euclidean algorithm to

the polynomials M(x) and F'(x) rather than to the usual

M(x) and the syndrome polynomial S(x), i.e., the 2t high-
order coefficients of E(x). In other words, to determine

polynomials D(x) and F(x)D(x), this new decoder applies

the Euclidean algorithm to M(x) and F'(x). Thus, F(x)

can be reconstructed from F(x) = F(x)D(x)/D(x). The

advantage of this new decoder over the decoder developed

in Fig. 9.3 of [2] is that both the recursive extension and
the inverse transform can be replaced by a single polyno-

mial division.

By combining Eqs. (A-3) and (A-9), the key equation
is obtained as follows:

-M(x)B(x) + F'(x)D(x) = F(x)D(x) (A-10)

where B(x) is defined as in Eq. (A-5).

The Euclidean algorithm is an iterative procedure to

find the greatest common divisor (GCD) of M(x) and

F'(x) [10]. An important intermediate relationship among
the polynomials of the Euclidean algorithm is given in the

following:

-M(x)si(x) + F'(x)pi(x) = ri(x) (A-11)

and

deg [Pi(a)] + deg [ri(x)] < deg [M(x)]

and

for - 1 < i _< m (A-12)

where i is the iterative index, and rm(z) is the GCD of

F'(x) and U(x). The algorithm involves four sequences
of polynomials: si(x), pi(x), ri(z), and qi(x). The initial

conditions are: s_l(x) = 1, So(X) = 0, p-l(z) = 0, p0(x) =

1, r-l(x) = M(x), and ro(x) -- F_(x); q-l(x) and qo(x)
are not defined.

The following lemma and theorem [10] show that the

Euclidean algorithm can be applied to the key Eq. (A-10)

to solve for the information polynomial F(x).

Lemma. Given two non-negative integers /_ and u

with u >__deg [r,,,(x)] satisfying /z + u = deg[M(x)]- 1,

there exists a unique index j, 0 < j < m, such that

deg [pj(x)] < #

and

deg [rj (x)] _< u

For the proof, see [10].

Using the above lemma, the following theorem can be

proved [10]:

Theorem. Suppose p(x), s(x), and r(x) are nonzero

polynomials satisfying

-M(x)s(x)+F'(x)p(x)=r(x)

and

deg [p(x)] + deg [r(x)] < deg [M(x)]

There then exists a unique index j, 0 _< j < m, and a

polynomial _(x) such that

v(x) =

and

=  (x)rj (x)

Now let n- k = 2T, where T is the maximum number
of errors in an RS code which can be corrected. If the

number of errors t in a received RS codeword is less than

or equal to T, then deg [D(x)] < T and deg [F(x)D(x)] <
k + T- l = n- T-1. Thus,

deg [D(x)] + deg [F(x)D(x)] < deg [M(x)] = n (A-13)
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Thus, let n - k >_ 2t, u -- T, and v = deg [M(x)] - 1 -

I_ = n-T- 1. By the proof of the above theorem and Eqs.

(A-10), (A-11), (A-12), and (A-13), there exists a unique
index j in the Euclidean algorithm such that D(x) =

,k(x)pj (x) and r(x)D(x) = )_(x)rj (x), where deg [pj (x)] _<

T and deg [rj(x)] _< n -T- 1. Thus, F(x) can be recon-
structed as:

F(x)- rj(x) (A-14)
Pi(*)
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